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Abstract--Considering temperature dependent heat transfer coefficients and heat transfer from the fin tip, 
the optimum dimensions of rectangular fins and cylindrical pin fins are investigated analytically. In this 
work, the fin volume is fixed to obtain the aspect ratios of the uniform area cross-section fins with maximum 
heat transfer rates. The characteristic length that has been determined empirically is taken into consideration 
in heat transfer coefficient. The analysis shows that an optimum aspect ratio of a fin is not found for a fin 
with heat tnmsfer from the tip at a large fin volume or a large heat transfer coefficient at the fin base. 
However, there always exists an optimum aspect ratio for an insulated-tip fin. The optimum aspect ratio 
of a fin is highest for a fin with an insulated tip and decreases with increasing rate of heat transfer from the 

tip. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Technology has led to a demand for high-perform- 
ance, light-weight, and compact heat transfer com- 
ponents. To accommodate the demand, finned sur- 
faces are used to increase the heat transfer rate 
between a primary surface and the surrounding fluid 
in heat exchange devices. Thus, optimization of the 
design of fins is of significant importance. For con- 
vective as well as radiative fins, Kern and Kraus [1] 
presented a thorough study of the optimum design of 
finned surfaces. A survey article by Aziz [2] provides 
the optimum dimensions of straight fins, annular fins, 
and spines of different profiles with several numerical 
examples included. In addition a comprehensive 
literature search regarding studies on extended sur- 
faces over six decades is available in the work of Kraus 
[3]. 

In boiling heat Lransfer, several papers [4-7] are 
devoted to finding the shape of fins that would min- 
imize the volume tor a given amount of heat dissi- 
pation. However, all of these studies consider neg- 
ligible heat transfer from the tip, because their fins 
have sharp tips. Apparently, the sharp-tip fin design 
has the disadvantage that the resulting profiles are too 
difficult to manufacture and are too fragile at the end. 
Several other studies [8-10] are conducted to find the 
dimensions of a constant thickness straight fin that 
would maximize the heat dissipation for a given 
volume. These studies, however, invoked the assump- 
tion of insulated tips. 

The effect of tip convection and optimum dimen- 
sions of cooling fins is presented by Laor and Kalman 
[11, 12]. Using a two-dimensional analysis, Chung 
and Iyer [13] approximately determine the optimum 
aspect ratios of longitudinal rectangular fins and cyl- 

indrical pin fins. Numerous design charts are pre- 
sented in their study. 

The purpose of this study is to analytically deter- 
mine the dimensions of uniform cross-section cyl- 
indrical-pin and longitudinal-rectangular fins with 
fixed fin volumes for maximum heat transfer. The 
effect of heat transfer from the fin tip is investigated. 
Also, the characteristic length is considered and is 
incorporated into the temperature dependent heat 
transfer coefficient. In addition, the validity criterion 
of the present one-dimensional model is proposed. 

ANALYSIS 

A cylindrical fin as well as a rectangular fin is now 
considered. The surface heat flux along the fin length 
varies as a power of the temperature difference 
between the fin and the ambient fluid. The heat trans- 
fer coefficient thus has the form : 

a ( T -  T~) m- l 
h (1) 

L: 

where Lc is the characteristic length and equals D or l 
[10, 13, and 14] for a cylindrical pin fin or a rectangular 
fin, respectively. In addition, m and n are dimen- 
sionless constants, while a is a dimensional constant. 
The values of a and m depend on the properties of the 
boiling liquids and the types of heat transfer [15--18]. 
The nature of the flow (such as laminar or turbulent 
flow) or the orientation of the fin is characterized by 
n. In addition, the following simplified assumptions 
have been made: (1) one-dimensional steady-state 
heat conduction through the fin; (2) the thermal 
properties of the fin are constants ; (3) no heat sources 
or sinks exist within the fin; (4) the ambient fluid 
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NOMENCLATURE 

fin profile area [m 2] q 
cross-section area of a fin [m 2] 
fin thickness of a rectangular fin [m] 
dimensional constant related to a T 
selected heat transfer mode and location V 
on fin surface, W m -2÷"" K m W 
dimensionless parameter X 
a(Tb-- 7",)"-IAO-")/2/k, 
[ = ~("+ 1)/2(hbb)/k ] 
dimensionless parameter, 
a( Tb _ Ta)m- 1V(l -n)/3 /k ' 
[ = 0t~/4)(1 - ,)/3 (hbD)/k] 
fin diameter of a cylindrical pin fin [m] 
hypergeometric function 
heat transfer coefficient, defined in 0 
equation (1) [W m -2. K -l]  
thermal conductivity (W m -  1. K -  1) ~k 
characteristic length [m] 
fin length [m] 
power-law exponent of temperature 
superheat 
fin parameter, 2x//~e(3-")/4 for a 
rectangular fin or 
2x/~[(n/4)~,-1)ct(,+ 5)]1/6 for a 
cylindrical pin fin a 
power-law exponent of  characteristic b 
length e 
dimensionless heat transfer rate from ha 
a fin, q/[(Tb-- Ta)kW] for a rectangular max 
fin and a(T b -  Ta)~-2qV-~/3/(4rck "2) for 0 
a cylindrical fin * 

heat transfer rate from a cylindrical 
fin, W, or from a rectangular fin per unit 
width [W m -  1] 
temperature [K] 
volume of fin [m 3] 
width of a rectangular fin [m] 
dimensionless coordinate, x/l. 

Greek symbols 
aspect ratio of a fin, lib for a 
rectangular fin or lID for a cylindrical fin 
ratio of the coefficient a in heat transfer 
coefficient at fin tip to peripheral fin 
surface, ao/a 
dimensionless temperature, 
(T--  r a ) / ( r u -  TrT.O ~ 
parameter, x/B~(m + l)e (3-")/4 for a 
rectangular fin or 
(g/4)(n-l)/642Bv(m+ 1)~x ~n+5)/6 for a 

cylindrical fin 
fin effectiveness, defined in equations 
(5) and (22). 

Subscripts and superscripts 
ambient or saturated 
fin base 
fin tip 
Harper-Brown approximation 
maximum 
optimum 
dimensionless quantity or optimum. 

temperature is uniform; (5) a constant root tem- 
perature is prescribed; and (6) the heat transfer 
coefficient does not vary with position from the root 
to the tip of the fin except insofar as h depends upon 
local temperature difference. 

Longitudinal rectangular fins 
This fin problem was investigated analytically by 

Liaw and Yeh [18]. Following them, the exact solution 
of temperature distribution in the fin is obtained as : 

(2]~1--rn~l [2 

~;l__/'fl '~ m+l] l/a 1-1 m + 3  3 

where 

fl = 0o(1 _~)~/<,~+1) (3a) 

and 

e2(m+ 1) 
3' - 4 Ba- e(- 1 - ,) /2.0~- 1. (3b) 

The dimensionless heat transfer rate from the fin is 
derived to be : 

Q = 2 (1--flm+~)J Cd-l-,)/,. (4) 

Fin effectiveness, ~, is defined as the ratio of the 
heat transfer rate of  a fin to that of the unfinned wall 
operating under the same conditions. It is derived as : 

= 2o61+,)14[Ba(m+l)]-,I2(l _tim+ 1)1/2. (5) 

For  the fixed fin profile area A of a rectangular fin, it 
is desired to maximize Q by varying ~. However, Q is 
a function of ~ and 0o. The equivalent problem of 
optimizing Q will be to find the extreme values of  Q 
subject to the constraint below: 
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H(oqO.) = N -  \~..~(,] (1 - f l "+) )  '/2 

[-1 m + 3  3 l_ f l , .+ l ]  J x r [ ~ ,  2(~--~ i ) ;~; 

2 1 --7 : / F [ ~ ,  m + 3  3 -]] 
2 ( - m - - ~ ; ~ ; T j ;  = 0. (6) 

Note that equation (6) is obtained from equation (2) 
imposing the boundary condition of uniform base 
temperature, i.e. 0(1) = 1. The solution to this prob- 
lem, obtained by means of Lagrange's multiplier 
method, is : 

I m 3 ] (l--flron+l) 3/2F 1,m~+l ;~; l - - f l o  m+l 

31 -O, oOlo")'/2(1-flo )F " '7°  ' m + l  ' 2 '  

m + l  [ tim+ 1) 1/2 + • (1 
m - 1  - '  

3-- / ' /  - - .  (3--n)/4 m+l 
l~--~n4ga(m+ 1) ~o flo ] 

2t¢,,+ t -] m +  1 + ,-o | = 
+m+l_2m%(roOdom) 1/2 1 ~ S - ~ j  O. 

(7) 

For given m, n, and Ba, the two optimum variables, ~o 
and 0oo, in equation (7) are solved in the following 
way. Initially, 0~o is guessed and Cto is obtained from 
equation (6). The guessed 0,o and the calculated Cto 
are then substituted into equation (7). This procedure 
was continued until equation (7) is satisfied to a tol- 
erance value of 10 -7. 

Constant heat transfer coefficient (m = 1) 
In the case of constant heat transfer coefficients, 

equation (7) reduces to : 

(1-fl2o)1/2- 3 - n  2 1/2 2 lq_n.No(1--7o)Ooo+Yo Oeo=O. (8) 

With the aid of the formula [19], 

f 1,~;5;z 2 = ~ ' * n l _  ~, 

equation (8) is rewritten in the form : 

No = In (1-7j2){1+[1 --02°(1--7°)1'/2} (9) 
0oo(1-70 

Hence, 0~o is obtained as : 

0~o = 1/(coshNo +7o ~/2 sinhNo). (10) 

The substitution of equation (10) into equation (9) 
gives : 

27o 1/2 + (1 +70) tanh No - - -  
3 - - n  

l + n  

• No( l -To ) sech2No = 0. (11) 

Insulated fin tip (8 = O) 
In this situation, it is apparent that 7o = 0 and 

flo = 0oo. Thus, equation (7) simplifies to : 

m 3 (m--1)(1--O~+')3/2F[1,-~-~;~;1--Oe% +l] 

+(m+l) I(l_O~+l)l/2 3--n.d, 0 m+l ] 
- -  1 + n  . . . .  = 0 ( 1 2 )  

where 0o = x/Ba( m+ 1)~(o 3-")/4. Substituting equa- 
tion (6), with e = O, into equation (12) yields : 

(1 +n)(m+ 1) + [(1 +n)(m-- 1) -- 20~+ l (n + 2 m +  1)] 

×F 1,~--~;g;1-oo~ +l =o.  (13) 

It is interesting to notice that equation (13) is only a 
function of tip temperature for known m and n. For 
any given values of m and n, 0eo can thus be immedi- 
ately obtained. 

e = O and n = O 
In some applications n is zero for boiling heat trans- 

fer [15-18]. In this case, equation (6) becomes 

--  +l  1/2. m 3 j]. ~o - ( 1 - 0 ~ f l )  F [ 1 , ~ - - ~ ; ~ ;  1 - 0 ~  + (14) 

Because the tip temperature of the optimum fin is 
evaluated from equation (13), ~ko is obtained directly 
from equation (14), for any given m. The dimen- 
sionless optimum thickness, length, aspect ratio, and 
heat loss by a rectangular fin are then obtained from 
the following expressions : 

and 

b * -  bo _ ( m + l ' ]  '/3 (15) 

t , =  to (2,'o (16) 

(17) 

qo Q * =  
(Tb -- Ta)(h2kA)1/3 

I I T/3 
= 2  ~ o ( m + l ) J  ( I -0~+I)1/ ' "  (18) 
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Harper-Brown approximation 
It is interesting to explore the simplified design by 

using the insulated tip results with the fin length 
increased by one-half thickness. Because this approxi- 
mation represents the heat flow rate for a rectangular 
fin, it should also give the dimensions of fins with 
maximum heat transfer rate. Following the math- 
ematical procedures described previously, equations 
(4) and (6), with e = 0 and the replacement of ~ with 
~+ 1/2, are coupled to solve the dimensions of fins 
with maximum heat transfer. The optimum aspect 
ratio of a fin is obtained as : 

O~ o = C*Ba 2/3 (19) 

where C* is equal to 1.0773, 1.0047, 0.9392, 0.9199, 
0.6529, and 0.5637 for m = 0.75, 1, 1.25, 1.33, 3, and 
4, respectively. 

Cylindrical pin fins 
Following Liaw and Yeh [18], the exact expression 

for the one-dimensional temperature distribution in a 
cylindrical pin fin may be obtained. The dimensionless 
heat transfer rate at the base of the fin is written as : 

1 (293v ~1/2 ( ~ )  (n-3)/6 
Q = g \ ~ j  [1 - -  0 m + l  (1 - 7)] 1/2 

(20) 

where 

~2(m+ 1 ) (~) ( . -  1)/3 
7 - 8 By 0 m-] . (21) 

The fin effectiveness of a cylindrical pin fin is : 

x [1--02+'(1--7)] 1/2 . (22) 

The subsidiary condition is found to be the same as 
equation (6) except that 7 is given in equation (21) 
instead of equation (3b). Similar to the previous rec- 
tangular fin problem, the optimum e and 0~ are 
obtained by means of Lagrange's multiplier method. 
The resulting expression is : 

o'+')3/2F 1, m ._3 ]] (1 - - t  [ ~ 1 ' 2  ; l - t i n+  

_ (7o0~;-m),/2 (1 -- tim+ ]) 

[malm÷  
x F  1 , ~ ; ~ ; 7 o  + m - - 1  

x x/2Bv(m+ 1) " ~(o"+')/rt~+' ] 
A 

m+l [ 
+ m+ 1 --2m7o (7°O~°")l/z (1 --to '+ ~) 

( n -  1)(m + 11) ) ] 
- ( n - 3 ) ( m -  flo ~+' = 0 .  (23) 

The solution procedure of % and Oe o is identical to the 
case of a rectangular fin. 

Constant heat transfer coefficient (m = 1) 
In the case of the heat transfer coefficient being 

independent of temperature, a simplified expression 
may be obtained. For m = 1, equation (23) reduces 
to: 

(n-- 3)(1 --to2) '/2 + (n+ 5)No(1-70)020 

+(n-1)7]o/202~o = 0. (24) 

Employing the same formulas and procedures as that 
of the previous rectangular fin case, a relationship is 
found to be : 

(n - 3) [27o ~/2 + (1 + 70) tanh No] 

+ [(n+5)No(1-70) +271/2] sech2No = 0. (25) 

Insulated fin tip (e = O) 
In this situation, 70 = 0 and to = 0co in view of 

equations (21) and (3a). Thus, equations (6) and (23) 
are simplified to : 

iPo=[Olom( 1 __om+l)],/2F[1 m + 3  3 ] 
' 2 ( m +  1);2; 1-0m +l 

(26) 

and 

(n - 3)(m - 1)(1 - 0m +~) 3/2 

[m3 1 x F  1 , ~ 1 ; ~ ; 1 - ~ 2 ~  

+ (m+ 1)[(n- 3)(1 - 0too + l)m 

+ (n + 5)~koOm + ]] = 0 (27) 

where qJo = (~/4) ("- ])/rx/2Bv(m + 1)~(o "+ 5)/6. Employ- 
ing the formula [19], 

el1 m + 3  3 ] 
[ 2 ' 2 ( m + 1 ) ' 2  ' z  

and substituting equation (26) into equation (27) 
yields : 



Dimensions of rectangular and cylindrical fins 3611 

( n -  3)(m + 1)+  [(n - 3 ) ( m -  1 )+  20~ + '  (n + 4m + 1)] 

x r  r m 3 ] 
L l , ~ - - ~ ; ~ ; 1 - 0 . %  +' = 0 (28) 

which is solved for 0oo given m and n. 
Olo 

,o _r. ,,,o' v 
L (m+l/J 

\ h~J 

. . . . .  4 

5 o.2 

and 

Q,  = m qo 

(T~ --  T ~ ) ( h 4 k V  -') '/~ 

r- £ .l = 2 L (m+ 1)¢o3J (1 -OFo+') '/2. (32) 

RESULTS AND DISCUSSION 

Long i tud ina l  rec tan#ular  f i n s  

For  forced-convective external flow, n is generally 
0.5 for laminar flow and 0.2 for turbulent flow [13]. 
The dependence of,x0 on B~ for n = 0, 0.2, and 0.5 and 
e = 0, 0.5, and 1 is given in Fig. 1. This figure shows 
that =o decreases with B~ for all values of  n. In 
addition, ~o reduces drastically for a slight increase of  
Ba for Ba < 0.1 and ~o varies little for a larger B,. At  
a given B,, ~o is larger for a smaller n. Thus, the 
results, with the simplifying assumption of  neglecting 
characteristic length, over-estimate ~0. For  the case of  
a fin with heat transferred from the tip (s 4= 0), the 
dependence of  ~o on Ba for n = 0, 0.2 and 0.5 is dis- 
played in the middle and lower parts of  Fig. 1. Note  
that two critical aspect ratios of  the fins are found and 
a maximum B,, designated (Ba)max, is observed for 

> 0. There exists no opt imum dimension ratio of  a 
fin for B~ > (B,) . . . .  This phenomenon is also observed 
in the two-dimensional analysis of  this problem for 
m = 1 [20]. 

To improve our understanding, Figs. 2 and 3 pre- 
sent the variation o f ~  on Q for e = 0 and 1 for m = 1 

(31) 

0'.2 0'.4 0.6 

Fig. 1. Dependence ofct o on B, for m = 1 and e = 0, 0.5 and 
1 (rectangular fin). 

0.5 . . . .  i . . . . . . . .  

Q 0 . 2 5  

O ITI CIXIm U ITI 

10 , , , , i  . . . . . . .  ,. 
",~-; B , ~ = o . o s ~  "~ 

~ I I I I 

e° o .5  o . 1 8 - - , / / /  " - ~  
o.15---'// % ~  
O.lO-.-// ~ . . ~  
0.05--' 

I i J i I 

10 0 
dZ 

Fig. 2. The effects of B~ on heat transfer rate, fin effectiveness, 
and tip temperature of a rectangular fin for m = 1, e = 0, 

and n = 0. 

and n = 0. Inspection of  Fig. 2 reveals that at a fixed 
B,, Q first increases to a maximum value then 
decreases with increasing ce. This may be apprehended 
that the total heat transfer area of  the fin surface also 
increases with ~ for a fixed fin profile area. It is worth 

[/hbV1/3"~ 3/5 1 r ~1i~6 11/5 

~* = ~o ~ - T - )  = 2 L ~ /  

e = 0 and  n = 0 

For  further simpfification of  the case with e = 0, the u 
effect of  n may be neglected by setting n = 0. This 
condit ion would be the case for boiling heat transfer. 
Since 0co is calculated from equation (28), ~ko can be 0~o 
directly obtained :From equation (26). The dimen- 
sionless opt imum diameter, length, aspect ratio, and 
heat loss, derived from equation (26) and the deft- 0 
nition of  ~o, are then : 

E = I  D* D o  _ 2 ( m +  1~ 1/s (29) " c =1 

h 2 ,/, \ ~ 0 o = )  O~o 

~ = 0  

/* - ( 3 0 )  0 i 
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Fig. 3. The effects of Ba on heat transfer rate, fin effectiveness, 
and tip temperature of a rectangular fin for m = 1 e = 1, and 

n = 0 .  

noting that 0~ decreases with increasing ~. Hence, with 
the conflicting trends of  increasing heat transfer area 
and decreasing the temperature difference between fin 
surface and environment, a maximum heat transfer 
rate may occur at a certain ~ which is designated So in 
this study. For  a smaller Ba, the temperature drop 
along the fin is smaller on increasing ~. Hence, the 
aspect ratio of  a fin with maximum heat transfer 
becomes larger. For  a fin with heat transferred from 
the tip, the decrease in tip temperature is very slight 
whereas the effective heat transfer area decreases on 
increasing ~ in the regions of  smaller ~, as seen in Fig. 
3. A minimum heat transfer rate of  a fin thus may 
occur. This is different from the case of  a fin with an 
insulated tip because the minimum heat dissipation is 
apparently at a smaller ~ because of  no heat transfer 
from the fin tip for a fixed fin profile area. To further 
increase ~, a significant increase in the heat transfer 
area on fin surface but large temperature drop along 
the fin is observed. Hence, the heat transfer rate from 
a fin reaches a maximum then decreases with increas- 
ing ~. In the Fig. 1, it is then understood that the 
larger c~0 (indicated in solid lines) of  a fin yields the 
maximum heat transfer whereas the smaller ~o (indi- 
cated in dashed lines) of  a fin gives a minimum heat 
dissipation. In this study, only the aspect ratios of  fins 
with maximum heat transfer rates are of  interest. 

At  Ba > 0.18 [ = (Ba)max], the heat dissipation of  a 
fin is very large at a smaller ~ due to the fact that a 
large heat transfer coefficient exists at the fin base. In 
addition, the temperature drop along the fin is larger 
for a larger Ba. Al though the surface area of  a fin 

0~o 

12 t 

6 

0 

10 

5 

00 

20 

o) 

. . . . . .  Chung & lyer [13] 
"xXX' X\%" ' L . . . .  

Try=4 ~ 

O.05 0.1 
B,, b) 

=o 

. . . . . .  Chung &lyer [13] 
o , 

, 

0(~ 0.02 0.04 

B,, 
Fig. 4. Dependence of~o and 4o on Ba for m = 0.75, 1, 1.25, 
1.33, 3, and 4 (rectangular fin) for n = 0 : (a) e = 0 and (b) 

e = l .  

increases with ~, the heat dissipation of  a fin decreases 
with ~ because the reduction in the temperature 
difference between the fin surface and the ambient 
fluid is much larger on increasing ~. Hence, no opti 
mum aspect ratio of  a fin exists for Ba 1> (Ba) . . . .  Also, 
the effects of  Ba on fin effectiveness are also included 
in Figs. 2 and 3. Comparison of  the two figures shows 
that a slight difference in ~ at a larger ~ whereas a 
pronounced difference in ~ at a smaller ~ between 

= 0 and 1 are observed. This is because the heat 
transfer at the fin tip is large for a short and stubby 
fin. 

Aside from the constant heat transfer coefficient 
case (m = 1), other important  heat transfer modes 
are film boiling (m = 0.75), laminar free convection 
(m = 1.25), turbulent free convection (m = 1.33), 
nucleate boiling (m = 3), and radiation into free space 
at zero temperature (m = 4). The aspect ratio and 
effectiveness of  an opt imum rectangular fin for ~ = 0 
and 1 are depicted in Fig. 4. Note  that the opt imum 
aspect ratio of  a fin decreases with increasing m at 
fixed Ba. This does not  mean the opt imum radiative 
fin is shorter and fatter than the opt imum convective 
fin because the coefficient of  a in the temperature 
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. 6 ,  i i i i o 

0 0 .02  0 .04  

B,, 
0 . . . .  b) 

-oo  t- 

0 0 .02  0 .04  

B,, 
0 .5  c) L i i 0"2L  

' r r l , =  , 3  

0.1 

0 
0 0 .02  0 .04  

B,,. 

Fig. 5. Relative errors of Cto, Qo, and ~o obtained from 
Harper-Brown approximation with respect to the present 

study. 

dependent heat tra.nsfer coefficient, h, is much smaller 
for a radiative fin than for a convective fin. In 
addition, it is required that the fin effectiveness be 
considerably greater than unity for a one-dimensional 
model, as shown in the Appendix. The approximate 
two-dimensional solutions of  Cto calculated by Chung 
and Iyer [13] are also given in this figure. It  is observed 
that the predicted values from Chung and Iyer com- 
pletely overlap those of this study for m = 0.75, 1, 
1.25, 1.33. 

Figure 5 shows the relative errors of the results 
obtained from the Harper-Brown approximation 
with respect to the present analytical study. Note that 
~o, Qo, and ~o deJaote (Cto,h~--Cto)/~o, (ao,ha-ao)/ao, 
and (¢o,b~- ¢o)/~o, respectively. It is observed that the 
heat loss by a fin predicted from Harper-Brown 
approximation is lower than the exact value and the 
percent error is Jess than 5.5% up to Ba = 0.05; 
however, the error rates of Cto and ~o are large for a 
larger B. especially for a larger m. This is due to the 
fact that the fins with maximum heat transfer are 
found to be long and slender at a smaller Ba. 

Cylindrical pin fin 
The heat transfer coefficient is independent of fin 

surface temperature but  is inversely proportional to 

0~o 3 

[<0.01 
l r t ,  

i 

~n,=l 
e:=O j 0 . 7  , - 

o5~. - -  o13 o l e ,  n.. " q 

C~o 3 
~-~[<0.01 

,~£=.1 

0.5 

rn,=l 
r~=0.2 

OCo 3 
)-<0.01 

n = 0 . 4  

00 0.2 0.4 0.6 

B,, 
Fig. 6. Dependence of% on By for m = 1 and e = 0, 0.5, and 

1 (cylindrical pin fro). 

D" for m = 1. In forced convection, n is generally 0.5 
for laminar flow and 0.2 or 0.3 for turbulent  flow. 
Figure 6 shows the dependence of ~o on By for m = 1 
and for e = 0, 0.5, and 1. Similar to the case of a 
rectangular fin, the opt imum aspect ratio of a cyl- 
indrical fin decreases with increasing By for all values 
of n. A maximum Bv exists for e > 0 and no solution 
is found for a fin with By greater than (Bv) . . . .  

For  the boiling heat transfer case (n = 0), the 
dependence of ~o and ¢o on Bv for e = 0 and 1 is 
displayed as Fig. 7. Analogous to the rectangular fin 
case, both ~to and ~o decrease with increasing Bv. For  
a given heat transfer mode, ~to decreases with increas- 
ing e at a fixed By. Also, to see the differences between 
this model and a two-dimensional one, the data pre- 
dicted by Chung and Iyer [13] is presented in this 
figure. 

To examine the influence of  e on ~o, the opt imum 
aspect ratios of cylindrical fins for n = 0 and By = 0.01 
are shown in Fig. 8. As can be seen, ~o decreases with 
e whereas Qo increases with e. This is observed for all 
heat transfer modes. 

The effect of  n and m on (Ba)max and (By)max are 
given in Fig. 9(a) and (b). From Fig. 9(a), it is seen 
that (B,)max decreases drastically with increasing e for 
smaller e. For  rn = 1, (Ba)max increases with decreasing 
n at a fixed e. For  n = 0, (Ba)m~x increases with decreas- 
ing m at a fixed e. As s tends to zero, (Ba)mx 
approaches infinity. Thus, the opt imum rectangular 
fin only exists at a smaller Ba for a larger e. There 
always exists an opt imum aspect ratio of a fin with 
an insulated tip which has been clarified in the first 
paragraph of this section. Also, note that large errors 
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may occur for ~0 calculated at a Ba or By n e a r  ( B a ) m a  x 

o r  ( B v ) m a  x [20]. Hence, it is suggested that Ba or  By 
should not  be close to (Ba)max or (Bv)m,x for an accurate 
design. In addition, note that for m = 1 (B0max 

increases with n at a fixed e in Fig. 9(b). This phenom- 
enon shows an inverse effect to the case of  a rec- 
tangular fin, i.e. (Ba)max increases with decreasing n. 

C O N C L U S I O N S  

(1) In forced convection, the tip temperatures of  
opt imum fins with insulated tips depend on n only. 
For  n = 0 and e = 0, the tip temperatures of  opt imum 
fins are functions of  m only. 

(2) There always exists an opt imum aspect ratio of  
a fin with an insulated tip. The aspect ratio of  an 
opt imum fin decreases with increasing fin volume or 
heat transfer coefficient at the fin base. 

(3) For  a fin with heat transferred from the tip, the 
increase in aspect ratio will first reduce the total heat 
transfer area but  the temperature difference between 
the fin surface and the ambient fluid varies little for 
smaller aspect ratios of  fins. U p o n  increasing the fin's 
aspect ratio, the surface area of  a fin increases very 
quickly just as the temperature drop along the fin 
does. Hence, first a minimum and then a maximum 
heat dissipation of  a fin is obtained on increasing the 
fin's aspect ratio. At  a larger fin volume or heat trans- 
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fer coefficient a t  :fin base, especially Ba > (Ba)max or  
By > (By) . . . .  the l:emperature drop  a long the fin is 
significant. The irLcrease in aspect  rat io  of  a fin will 
no t  improve fin's heat  transfer.  Thus,  no  op t imum 
aspect rat io  of  a fin is found  under  this condi t ion.  

(4) At  a specified heat  t ransfer  mode,  the op t imum 
aspect rat io  of  a fin is the largest for a fin with an  
insulated tip and  6ecreases wi th  increasing heat  t rans-  
fer rate f rom the tip. 

(5) In forced a:s well as free convection,  the opti- 
m u m  aspect rat io  of  a cylindrical fin increases with  n 
at  a given By whereas % decreases with n at  a fixed Ba 
for a rec tangular  tin. 
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APPENDIX 

The one-dimensional conduction model is valid only when 
the longitudinal heat flux is far greater than the transversal 
heat flux. This requirement may be written as : 

~ >> hb(Tb -- Ta). (A1) 

Note that equation (A1) can also be expressed as : 

>> 1. (A2) 

Substituting equation (5) into the above criterion gives : 

Fl_ O+, 
2~(l+')/' L ~ J  >> I (A3) 

for a rectangular fin. After some rearrangement, equation 
(A3) becomes : 

B~(m+ I) +fl=+,. (A4) 1 >> ~ _ _ .  ~-(1+.)/2 

The above criterion can be simply expressed as : 

hbb(m + 1) 
I >> 4 ~  (A5) 

since fl is always positive. For m = 1, it is easy to obtain the 
familiar criterion, i.e. 1 >> hbb/(2k). 


